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2 1 SETS AND MAPS

1 Sets and maps

Definition Set |

A set is a boolean function x which sends an object to {0,1}:

xala)=1 = a€A xala)=0 = a¢ A ACBifxa<xs

Proposition De Morgan's Laws |

S\J4i=[)(5\4) S\ JA4i=[)(5\4)

i€l i€l i€l i€l

Definition Properties of maps |

Amap f: X - Y is:
e injective or into if flz)=f() = z=1'
e surjective oronto if VyeYIze X | f(z)=y
e bijective if injective and surjective.

Notation: f|A is a function f restricted to a domain A.

Definition Image |

Let f: X > Y withAC X and CCY.
e The direct image f(A)is {yc€Y |Ja€ A| f(a) =y}
e The inverse image (or pre-image) f~1(C)is {r € X | f(z) e C} C X

Proposition |

let f: X > Y with A, BCXandC,DCY.
f(AUB) = f(A)U f(B) f(ANB) C f(A)Nn f(B)
f7HCuDb)=fC)uf (D) f/Henb)=fHC)nfH(D)

Proposition |

Consider the map f : X — Y and subsets A; and C; of X and Y respectively for all i € I.

f (U Az-) = J r(4y) f (ﬂ Ai> <) f(4)

i€l icl icl icl

F (U Ai) =UJr '@ 1 (ﬂ Ai> = f'(4)

i€l i€l i€l i€l

Proposition |

Suppose that f : X - Y isamapand BC X,D CY. Then,

F(X\B) C f(X)\ f(B) f7YA\D) =X\ f"1(D)

Proposition |

Let X,Y besetsand f: X — Y a map.
e Forany C C Y we have f(f~1(C)) =Cn f(X).
e Forany C C Y, if f is surjective, f(f~1(C)) =C
e Forany A C X we have A C f~1(f(A))

Definition Invertible map |

A map f: X — Y is invertible if there exists a map g : Y — X such that
g o f is the identity map of X and f o g is the identity map of Y.




3 2 REAL ANALYSIS

Proposition |

A map is invertible if and only if it is bijective.

2 Real analysis

2.1 Bounds

Definition Bounds |

S C R is bounded above if there exists an upper bound u € R such that z < u for all z € S.
If S is bounded above, we call u a least upper bound of supremum for S, denoted sup(.S), if:
1. w is an upper bound for S
2. x > u for any upper bound x for S
S C R is bounded below if there exists a lower bound 7 € R such that z > /¢ for all z € S.
If S is bounded below, we call ¢ a greatest lower bound of infimum for S, denoted inf(.S), if:
1. /is a lower bound for S
2. x < /£ for any lower bound z for S

Proposition Completeness property

Any non-empty subset of R which is bounded above has a least upper bound.
Any non-empty subset of R which is bounded below has a greatest lower bound.

Proposition |

The set N of positive integers is not bounded above.

Proposition Denseness of Q in R |

Between any two distinct real numbers 2 and y there is a rational number.
Between any two distinct real numbers there is also an irrational number.

Proposition Triangle inequality, reverse triangle inequa/ityl

For all z,y € R:
[z 4yl < ||+ [yl |z =yl = ||z — [yl

2.2 Sequences

Definition Convergent sequence

A sequence (s, ) converges to L € R if:

for all € > 0 there exists N. € N such that |s, — L| < ¢ for all n > N,

Proposition |

A convergent sequence has a unique limit.

Proposition |

Suppose that there exists K € N (independent of ¢) such that:
for all € > 0 there exists N, such that |s,, — L| < K¢ for all n > N,

Then (s,) converges to L.

Definition Monotonic sequence

A sequence is:
e monotonic increasing if s, 1 > s, foralln € N
e monotonic decreasing if 5,11 < s, foralln € N
e monotonic if it is monotonic decreasing or monotonic increasing
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Proposition |

Every bounded monotonic sequence of real numbers converges.

Definition Cauchy sequence

A sequence is a Cauchy sequence if:

for all £ > 0 there exists N € N such that if m,n > N then |s,;, — s,| < ¢

Proposition Cauchy’s convergence criterion

A sequence (s;,) of real numbers converges if and only if it is a Cauchy sequence.

Proposition |

Every bounded sequence of real numbers has at least one convergent subsequence.

Proposition |

Suppose that (s;,), (t,) converge to s,t respectively. Then,
o (s, +1t,) converges to s+t
e (spty,) converges to st
e 1/t, converges to 1/t provided ¢t # 0

2.3 Limits of functions

Definition Limit |

f(z) has limit L at a (notation: lim = L) if:

r—a

for all € > 0 there exists § > 0 such that 0 < |z —a| <d = |f(z) —L| <e

f(x) has right-hand limit L at a (notation: lim = L) if:

r—at

for all € > 0 there exists § > 0 such that |f(z) — L| < € for all z € (a,a + 9)

Proposition |

The following are equivalent:
1. lim f(z) =L
r—a
2. if (=) is any sequence such that (x,,) converges to a but for all n we have X,, # a,
then (f(z,)) converges to L.

Definition Continuity |

A function is continuous at « if lim exists and is equal to f(a).
r—a

Proposition |

Suppose that f : R — R is continuous at a € R and that f(a) # 0.
Then there exists § > 0 such that f(z) # 0 whenever |z — a| < 6.

Proposition |

Suppose that f,g : R — R are continuous at a € R.
Then f+g, f-g,|f| and é (only if g(a) # 0) are also continuous at a € R.

Proposition |

Suppose that f is continuous at a and g is continuous at f(a). Then go f is continuous at a.
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Definition Intermediate value property

A function f : R — R has the intermediate value property (IVP) if given any a,b,d in R with @ < b and d between
f(a) and f(b), there exists at least one ¢ satisfying a < ¢ < b and f(c) = d.

J

Proposition

All continuous functions R — R (or I — R where I is an interval) have the intermediate value property.

3 Metric spaces

Definition Metric space |

A metric space consists of a non-empty set X together with a function d : X x X — R such that the following
axioms hold:

1. Nonnegativity For all z,y € X, d(z,y) > 0 and d(z,y) =0 < z =y

2. Symmetry For all z,y € X, d(z,y) = d(y,x)

3. Triangle inequality For all z,y, 2z € X, d(z,2) < d(z,y) + d(y, 2)
Notation: E™ is the metric space (R™,d) where d is the Euclidean metric.

3.1 Continuity

Definition Continuity of multivariable functions |

A function f : R™ — R is continuous at a point a = (ay,...,a,) € R™ if for all £ > 0 there exists 6 > 0 such that
|f(z) — f(a)|] < e forall x = (x1,...,x,) satisfying

Definition Continuity of metric space maps |

Suppose that (X,dx) and (Y, dy) are metric spaces and let f : X — Y be a map.
e f is continuous at z( € X if:
for all € > 0, there exists § > 0 such that dy (f(x), f(x0)) < € whenever dx (z,zo) < J, for all x € X.
e f is continuous (or (d, dy)-continuous) if f is continuous at every 2y € X.

|

Proposition

Suppose that f, g : X — R are continuous, real-valued functions on a metric space (X, d).
Then f+g, f-g,|f| and é (only if g(z) 20 Va € X) are also continuous.

J

Proposition

Suppose that f: X — Y and g : Y — Z are maps of metric spaces,
with f continuous at a € X and g continuous at f(a). Then go f is continuous at a.

Proposition

|

Suppose that f : X — X', g : Y — Y’ are maps of metric spaces continuous at a € X,b € Y respectively. Then
themap fxg: X XY = X' xY’ (z,y) = (f(x),g(y)) is continuous at (a, b).

J

Proposition

The projections p, : X xY — X, p, : X XY — Y of a metric product onto its factors,
defined by p.(z,y) =z, py(z,y) = y, are continuous.

J

Proposition

The diagonal map A : X — (X, X), (z) — (z,x) of any metric space is continuous.




3.2 Bounded sets 6 3 METRIC SPACES

3.2 Bounded sets

Definition Bounded subset |

A subset S of a metric space (X, d) is bounded if there exist o € X, K € R such that d(z,20) < K for all z € S.

Definition Diameter |

If S is a non-empty bounded subset of a metric space with metric d, then the diameter of S is:

If S nonempty: diam(S) := sup{d(x,y) : z,y € S} diam(&) =0

Definition Bounded functionl

If f:S5 — X is a map from a set S to a metric space X, then we say f is bounded if f(.5) is bounded.

Proposition |

The union of any finite number of bounded subsets of a metric space is bounded.

3.3 Open sets

Definition Open ball

Let (X,d;) be a metric space, zo € X and r > 0(r € R).
The open ball in X of radius r centered at x is the set

B (z9) ={x € X : d(x,z0) <1}

If we also consider metrics other than d, we use the notation BY(x).

Proposition

f continuous at gy <= Ve >0 3§ > 0 such that f(BgX (z0)) € B (f(x0))

Proposition

Let B, (x) be an open ball and y € B,.(x). Then there exists € > 0 such that B.(y) C B, (z)

Definition Open set |

Let (X, d) be a metric space and U C X.
We say that U is open in X if for every x € U there exists ¢, > 0 such that B, (z) C U.

J

Proposition

Let f: X — Y be a map between metric spaces.

f continuous <= f~!is open in X whenever U is open in Y’

Proposition |

The intersection of a finite number of open sets in a metric space is open.
The union of any number of open sets in a metric space is open.

3.4 Closed sets and closure

Definition Closed set |

A subset V' of a metric space X is closed in X if X \ V is open in X.

Proposition |

The intersection of any number of closed sets in a metric space is closed.
The union of a finite number of closed sets in a metric space is closed.
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Proposition |

For any metric space X, the empty set @ and the whole set X are both open and closed in X.

Definition Closure |

Let X be a metric space and A C X.
e z € X is a point of closure of A in X if for all ¢ > 0 we have B.(z) N A # @.
e The closure of A in X (denoted A) is the set of all points of closure of A in X.

Definition Dense subset |

A subset A of a metric space X is said to be dense in X if A = X.

Proposition Properties of closure |

Let A, B be subsets of a metric space X. Then,
1. ACA

2. ACB = ACB

3. Aisclosedin X < A=A

4. A=A

5. Ais closed in X

6. A is the smallest closed subset of X containing A

Proposition |

Let f: X — Y be a map of metric spaces. Then

f continuous <= f(A) C f(A) forall AC X

Definition Limit point |

A point z in a metric space X is a limit point of A C X if:

for all € > 0 there exists a point in B.(x) N A other than z itself

Proposition |

Let A be a subset of a metric space X.

Ais closed in X <= A contains all of its limit points in X

Proposition |

Let A be any subset of a metric space X. Then A is the union of A with all its limit points in X.

3.5 Interior and boundary

Definition Interior |

The interior A of A is the set of points a € A such that B.(a) C A for some £ > 0.

Proposition |

Let A, B be subsets of a metric space X. Then,
1. AcaA

2. ACB = ACBH

3. /}isopen inX < A=4

4. A=A

5 Ais open in X

6. A is the largest open subset of X contained in A.
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Definition Boundary |

The boundary OA of a subset A in a metric space X is the set Z\/Ci

Proposition |

Let A be a subset of a metric space X and z € A.

x € 0A < ANDB.(z)and (X \ A) N B.(z) are both non-empty

3.6 Equivalent metrics

Definition Topological equivalence

Metrics dy, ds on a set X are topologically equivalent if:

Uis di-openin X <= Uisds-openin X forallU C X

Proposition |

Suppose that dq, d> are equivalent metrics for X.
Consider metric spaces (Y, dy), (Z,dz) and functions f: Y — Z, g: X — Z. Then,

f (dy,dy)-continuous < f (dy,dz)-continuous ¢ (ds,dz)-continuous <= g (da,dz)-continuous

Definition Lipschitz equivalence |

Two metrics dq,d> on a set X are Lipschitz equivalent if there exist h, k > 0 such that for any =,y € X:

hdy(z,y) < di(x,y) < kda(z,y)

Proposition |

Lipschitz equivalent metrics are topologically equivalent.

Definition Lipschitz equivalence |

A Lipschitz equivalence is a bijective map f: X — Y where there exist h, k > 0 such that for any z1, x5 € X:

hdy (f(21), f(22)) < dx(x1,22) < kdy (f(21), f(22))

Definition Isometry |

An isometry f: X — Y is a bijective map such that for all x1,25 € X:

dy (f(z1), f(22)) = dx (71, 72)

4 Topological spaces

Definition Topological space |

A topological space T'= (X, T) consists of a non-empty set X
together with a fixed family 7 of subsets of X satisfying:
1. @ and X arein T
2. the intersection of any finite collection of sets in 7 isin T
3. the union of any collection of sets in T is in T
We call T a topology for X, and if U € T we say that U is open in 7. (or open in X)
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Definition Examples of topological spaces |

Let X be a nonempty set.

The discrete topology on X consists of all subsets on X.

The indiscrete topology on X is the family {&, X }.

The co-finite topology on X consists of the empty set and all subsets U of X such that X \ U is finite.

Definition Metrizability |

A topological space (X, T) is metrizable if there exists a metric dx such that:
UeT <= Uisdx-openin X

If a topological space (X, T) is metrizable with metric dx, we say that T is induced by dx

Definition Coarse and fine topologies |

Given topologies 71,72 on the same set X,
we say 7; is coarser than 75 if 71 C 75, and 77 is finer than 75 if 75 C Ty

Proposition

J

Let U C X be a subset of a topological space.

Uis openin X <= forall z € U, there is an open subset U, C X such that x € U,

4.1 Continuity

Definition Continuity of topological spaces |

Suppose that (X, Tx) and (Y, 7Ty ) are topological spaces and f: X — Y is a map.
f is continuous if for all U € Ty, f~1(U) € Tx.
f is continuous at zg € X if for all U’ € Ty s.t. f(xg) € U’, there exists U € Tx s.t. x € U and f(U) C U’

Proposition

f:X — Y is continuous <= f is continuous at x Vz € X

i

Proposition

Let (X, Tx), (Y, Ty) be topological spaces induced by metric spaces (X,dx), (Y,dy) respectively.

f:X =Y is (dx,dy)-continuous < : X — Y is (Tx, Ty )-continuous

J

Proposition

The composition of two continuous maps f: X — Y and g: Y — Z is continuous.

Proposition

J

The following maps are continuous:
1. The identity map of any topological space.
2. Any constant map.
3. If Tx is the discrete topology, any map X — Y.
4. If Ty is the indiscrete topology, any map X — Y.

Definition Homeomorphism |

A homeomorphism between topological spaces X and Y is a bijective map f: X = Y
such that f and its inverse function f~! are both continuous.
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4.2 Bases

Definition Basis |

A basis for a topology T is a subfamily B C T such that every set in 7 is a union of sets from B.

Proposition |

A map f: X — Y is continuous if for each open set B in some basis for Ty, the inverse image f~*(B) is open in
X.

4.3 Closure and interior

Definition Closed set |

A subset V' of a topological space X is closed in X if X \ V is open in X.

Proposition |

Let X be a topological space. Then
1. @ and X are closed in X
2. the intersection of any collection of closed sets in X is closed in X
3. the union of any finite collection of closed sets in X is closed in X

Proposition |

Let f: X — Y be a map of topological spaces.

f continuous <= f~!(V) is closed in X whenever V is closed in Y’

Definition Closure |

Let A be a subset of a topological space X.
A point a is a point of closure of a A C X if UN A = & for any open subset U C X with a € U.
The closure A of A in X is the set of points of closure of A in X.

Definition Dense subset |

A subset A of a space X is dense in X if A =X.

Proposition |

Let f: X — Y be a map of topological spaces. Then

f continuous <= f(A) C f(A) forall ACX

Definition Interior |

Let A be a subset of a topological space A.
A point a is an interior point of A C X if there exists some set U which is open in X and with a € U C A.

The set of all interior points of A is called the interior of A, denoted A.

Proposition |

We have X \ A = X \ A for any subset A of a space X.
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Proposition Properties of interior and closure

Let A, B be subsets of a topological space X. Then,

1. AC4A 7. AC A o
2. ACB = ACB 8. ACB = ACB |
3. Aisclosed in X < A=A 9. Aisopenin X «<— A=A
ha=d 10. A=A
5. Ais closed in X ol .
=. .. 11. Aisopenin X
6. A is the smallest closed subset of X containing A

12. Ais the largest open subset of X contained in A.

Definition Boundary |

The boundary 0A of a subset A of a space X is the set Z\fi

Proposition |

For any subset A of a space X, we have 94 = AN X\ A=09(X \ A)

Definition Neighborhood

A neighbourhood of a point x in a space X is a subset N of X which contains an open subset of X containing x.

4.4 Subspaces

Definition Subspace topology

Let (X, 7)) be a topological space and let A be a non-empty subset of X. The subspace topology on A is:

Ta={ANU:U €T}

Proposition

J

Let (X, 7) be a topological space and let A be a non- empty subset of X with the subspace topology 7.
Then the inclusion map i : A — X defined by i(a) = a for all a € A, is (Ta, T )-continuous.

J

Proposition

Let f: X — Y be a continuous map of topological spaces (X,7),(Y,7’) and let A be a non-empty subset of X
with the subspace topology 74. Then the restriction f|4 : A — Y is (Ta, T’)-continuous.

Proposition |

Let X be a topological space, let A be a subspace of X and let i : A — X be the inclusion map.
Suppose that Z is a topological space and that g: Z — A is a map. Then:

g is continuous <= iog: Z — X is continuous

The subspace topology T4 on A is the only topology satisfying this proposition for all possible maps g.

4.5 Product spaces

Definition I

Suppose that (X, 7x), (Y, Ty) are topological spaces.
The product topology 7x xy on X x Y is the family of all unions of sets of the form U xV where U € Tx, V € Ty.

Proposition |

The following projection maps are continuous:

px X XY = X:(z,y)—x py : X XY =Y :(z,y)—~y
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Proposition

J

Let X,Y, Z be topological spacesand f: Z —» X xY.

fis continuous <= pxof:Z — X andpy o f:Z — Y are continuous

J

Proposition

If f: X — X', g:Y — Y’ are continuous, then sois f xg : X XY — X'xY” defined by (fxg)(z,y) = (f(z),9(y))-

J

Proposition

For any topological space X, let A : X — X x X be the diagonal map defined by A(z) = (z, z).
The diagonal map is continuous.

J

Proposition

Let X and Y be topological spaces, and let yo € Y. Define iy, : X — X x Y by iy, (z) = (x, o).
This map is continuous.

J

Proposition

If f,g:X — R are continuous real-valued functions on a topological space X, then so are:

|f] f+g fg 1ifgisneverOonX
g

Definition Graph

Let f: X — Y be a map of topological spaces. The graph of f is defined by:

Gy :={(z,y) e X xY : f(z) =y}

with the topology induced by the product topology on X x Y.

J

Proposition

Let f: X — Y be a continuous map of topological spaces.
Then the map 0 :  — (z, f(z)) defines a homeomorphism from X to G.

Proposition

J

WCXxYopenin X xY < forall (z,y) € W there exist U C Tx,V C Ty with (z,y) e UXxV CW

4.6 The Hausdorff condition

Definition Convergent sequence |

A sequence (z;,) of points in a topological space X converges to a point z € X if

for all open sets U containing x, there exists n € Nsuch that n >N — z, € U

Definition Hausdorff condition |

A topological space X satisfies the Hausdorff condition if
for any two distinct points x,y € X there exist disjoint open sets U,V of X such thatz e U,y € V

We refer to a topological space which satisfies the Hausdorff condition as a Hausdorff space.

Definition Topological property

A topological property is a property of a topological space that is invariant under homeomorphisms.
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Proposition |

Any metrizable space (X, 7)) is Hausdorff.

J

Proposition

1. Any subspace of a Hausdorff space is Hausdorff.

2. The topological product X x Y of spaces X and Y is Hausdorff <= both X and Y are Hausdorff.
3. If f: X — Y is an injective continuous map of topological spaces and Y is Hausdorff then so is X.
4. Hausdorffness is a topological property.

Definition Regular and normal space

A topological space X is regular if given any closed subset V' C X and point z € X \ V, there exist disjoint open
subsets U, U’ C X such that V C U and z € U".

A topological space X is normal if given any closed subset V' C X, and closed subset V' C X disjoint from V, there
exist disjoint open subsets U, U’ C X such that V C U and V' C U’.

4.7 Connected spaces

Definition Connected space |

A topological space X is connected if there does not exist a continuous map from X onto a two-point discrete
space.

Definition Partitionl
A partition A LI B is a pair of non-empty subsets A, B C X such that:

X=AUB ANB =g A, B open in X

J

Proposition

Let X be a topological space. The following are equivalent:
1. X is connected.
2. There exists no partition of X.
3. The only subsets of X which are both open and closed are X and @.

Definition Connected subset |
A non-empty subset A of a topological space X is connected if A with the subspace topology is connected.
The empty set is connected.

J

Proposition

A non-empty subset S C R is an interval if and only if it satisfies the following property:
if z,y € S and z € R are such that z < 2 < gy, then z € S.

Proposition

J

Let S be a subspace of R.
S is connected <= S is an interval

Proposition

J

Let f: X — Y be a continuous map of topological spaces and X connected.
Then both f(X) and the graph G of f are connected.

J

Proposition

Connectedness is a topological property.

J

Proposition

Suppose that {A; : i € I} is an indexed family of connected subsets of a topological space X with A; N A; # @ for

each pair ¢,5 € I. Then |J A; is connected.
il
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Proposition |

Let X x Y be the topological product of spaces X,Y.

X XY is connected <= X and Y are both connected

Proposition |

Suppose that A is a connected subset of a space X and that A C B C A. Then B is connected

4.8 Path-connected spaces

Definition Path-connected space |

For points z,y in a topological space X, a path in X from z to y is a continuous map f:[0,1] = X
such that f(0) = « and f(1) = y. We say that such a path joins z and y.
A topological space X is path-connected if any two points of X can be joined by a path in X.

Proposition |

Any path-connected space X is connected.

Proposition |

Suppose that f,g:[0,1] — X are paths in a space X from z to y and from y to z, respectively.
We can define a path in X from z to z as follows:

ey < 172 tel0,1/2]
VT g2t -1) te12,1]

Proposition |

A connected open subset U of R" is path-connected.

5 Compact sets

Definition Cover |

Suppose X is a set and A C X. A family {U; : i € I'} of subsets of X is called a cover for A if AC U U;

iel
A subcover of a cover {U; : i € I} for A is a subfamily {U; : j € J} for some subset J C I such that {U; : j € J}
is still a cover for A. We call it a finite subcover if J is finite. If &/ = {U; : i € I} is a cover for a subset A of a
topological space X, and each U; is open in X, then we call &/ an open cover.

Definition Compact set |

A subset A of a topological space X is compact if every open cover for A has a finite subcover
A subset A of a topological space X is relatively compact in X if the closure A of A in X is compact.

Proposition |

Let C' be a compact subset of a Hausdorff space X. Then C' is closed in X.

Proposition |

If f: X — Y is a continuous map of topological spaces and X is compact then f(X) is compact.

Proposition |

Compactness is a topological property.

Proposition

J

Any closed subset C' of a compact space X is compact.
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Proposition |

Let X,Y be topological spaces with topological product X x Y.

X xY is compact < X and Y are both compact

5.1 Compact sets in metric spaces

Proposition |

Any compact subset C of a metric space (X, d) is bounded.

Proposition |

Any continuous map from a compact space to a metric space is bounded.

5.2 Compact sets in Euclidean spaces

Proposition |

Any closed bounded interval [a,b] in R is compact.

Proposition Heine-Borel Theoreml

Let C C R™.
C is closed and bounded =— C'is compact

Proposition |

If f:C — R is continuous and C' is compact then f attains its bounds on C.
This means there exist ¢y € C and ¢; € C such that f(cy) = inf f(C) and f(¢;1) = sup f(C).
A continuous real-valued function on [a, b] attains its bounds.

5.3 Uniform continuity

Definition Uniform continuityl

A map f: X — Y of metric spaces (X,dx) and (Y, dy) is uniformly continuous if:

for all € > 0 there exists § > 0 such that dx(z,a) <d = dy(f(z), f(a)) <e forallz,a e X

Proposition |

If f: X — Y is a continuous map of metric spaces and X is compact then f is uniformly continuous on X.

Proposition |

If metrics dy,dy for X are Lipschitz equivalent, then the identity map of (X, d;) to (X, ds) is uniformly continuous.

J

Proposition

Let X be a compact space and Y a Hausdorff space. Let X : X — Y be a continuous map.
If f is bijective, then f is a homeomorphism from X to Y.
If f is injective, then f is a homeomorphism from X to f(X).
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6 Sequences in metric spaces

6.1 Convergent sequences

Definition Convergent sequence |

A sequence (x,) in a metric space X converges to x € X if:

for all € > 0 there exists N € N such that n> N = z,, € B.(z)

Proposition Uniqueness of limits |

If a sequence (z,,) in a metric space X converges to both = and y in X, then z = y.

Definition Cauchy sequence |

A sequence (x,) in a metric space (X, d) is called a Cauchy sequence if:

for all € > 0 there exists N € N such that m,n >N = d(zy,z,) <€

J

Proposition

Any convergent sequence in a metric space is a Cauchy sequence.

J

Proposition

Suppose that Y is a subset of a metric space X and (y,,) is a sequence in Y which convergestoa € Y. Thena € Y.
If Y is closed in X, thena €Y.

Proposition

J

If a Cauchy sequence (z,,) in a metric space X has a subsequence converging to = € X then (z,,) converges to x.

6.2 Sequential compactness

Definition Sequential compactness |

A metric space X or a subset X C R is sequentially compact if every sequence in X has at least one subsequence
converging to a point of X. The empty set is also considered to be sequentially compact.
A non-empty subset A of a metric space is sequentially compact if this definition holds with the subspace metric d 4.

Proposition

|

Let S C R.
S is closed and bounded <= S is compact <= S is sequentially compact

Proposition

J

Let (X, d) be a metric space.

X is sequentially compact <= X is compact

Proposition

J

Let (x,,) be a sequence in a metric space X and let z € X.
If for all ¢ > 0, B.(z) contains x,, for infinitely many values of n, then (z,) has a subsequence converging to n.

J

Proposition

Suppose that a sequence (z,,) in a metric space X has no convergent subsequences.
Then for each z € X there exists £, > 0 such that B, contains z,, for only finitely many values of n.

J

Proposition

Any compact subset X of a metric space Y is sequentially compact.
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Definition Lebesgue number

Let U be any family of subsets of a metric space X covering a subset A C X. A Lebesgue number for I/ is a real
number € > 0 such that for all @ € A the ball B.(A) is contained in some single set from U.

Proposition |

Any open cover U of a sequentially compact metric space X has a Lebesgue number.

Definition <-net |

Let € > 0 be a real number and X a metric space. N C X is an e-net for X if the family {B.(x) : « € N} covers

X
Proposition |

Let (X, d) be a sequentially compact metric space and let ¢ > 0. Then there exists a finite e-net for X.

6.3 Uniform convergence

Definition Pointwise convergence |

A sequence (f,) converges pointwise to f on D if for all x € D, the sequence (f,(z)) converges to f(z).

Definition Uniform convergencel

A sequence (f,,) defined on a domain D C R converges uniformly on D to a function f if:

for all € > 0 there exists N € N such that  |f,(z) — f(z)| <e forallz€e D,n> N

Proposition |

fn converges uniformly to f on D if M,, = sup |f.(x) — f(z)| exists for all sufficiently large n, and lim M, = 0.

zeD n—oo

Definition Uniform Cauchy sequencel

A sequence (f,) is said to be uniformly Cauchy on D C R if:

for all € > 0 there exists N € N such that  |f,(z) — fo(z)| <e  forall m,n> N,z € D

Proposition Cauchy'’s criterion for uniform convergencel

Let (f,.) be a sequence of real-valued functions defined on D C R.

(fn) converges uniformly on D <= (f,) is uniformly Cauchy on D

Proposition |

If f,. : (a,b) = R is continuous at ¢ € (a,b) for all n € N and f,, — f uniformly, then f is continuous at c.

Proposition |

If f :[a,b] — R is continuous for all n € N and (f,) — f uniformly on [a,b], then f is continuous on (a,b).

Proposition |

Suppose that the pointwise limit of a sequence (f,,) of continuous functions on [a,b] is not continuous on [a, b].
Then the convergence is not uniform.
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6.4 Complete spaces

Definition Complete space

A metric space X is complete if every Cauchy sequence in X converges to a point in X.

J

Proposition

Suppose that X, Y are metric spaces and f is a bijective map such that f and f~! are uniformly continuous.

X is complete <= Y is complete

Proposition

Let X be a metric space and let dy, ds be Lipschitz equivalent metrics.

(X,dy) is complete <= (X, ds) is complete

Proposition

J

A complete subspace Y of a metric space X is closed in X.

Proposition

J

A closed subspace Y of a complete metric space X is complete.

Proposition

J

Any compact metric space X is complete.

J

Proposition

Let X,Y be metric spaces and with product X x Y.

X x Y is complete <= X and Y are complete

J

Proposition

Let B(D, X) be the space of bounded functions D — X with the sup metric deo.

(B(D,X),ds) is complete <= X is complete

6.5 Fixed points and contractions

Definition Fixed point |

Given any set S and map f : S — S, a fixed point of f is a point p € S such that f(p) =p

Definition Lipschitz condition |

Let o, K be constants with a > 0, K > 0.
A function f : D — R satisfies the Lipschitz condition of order o on D with constant K, if:

forallz,ye D |f(z) - f(y)| < K|z —y|*

J

Proposition

1. If f satisfies a Lipschitz condition of order &« > 0 on D then f is uniformly continuous on D.

2. If f satisfies a Lipschitz condition of order o > 1 on [a, b] then f is constant on [a, b].

3. If f:[a,b] = R is continuous on [a,b] and differentiable on (a,b) with |f'(z)| < K for all = € [a, ],
then f satisfies a Lipschitz condition of order 1 with constant K on [a, b].
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Proposition |

Let D be an interval [a,b], (—00,b] or [a,00), and f: D — D Lipschitz with K < 1 and o = 1.
Then f has a unique fixed point p € D.
Moreover, if z; is any point in D and X,, = f(z,_1) for n > 1, then (x,,) converges to p.

Definition Contraction |

Let (X,d) be a metric space. A function f: X — X is a contraction if there exists 0 < K < 1 such that:

d(f(z), f(y)) < K-d(z,y) forallz,ye X

Proposition |

Any contraction of a metric space X is uniformly continuous.

Proposition Banach's fixed point theorem

If f: X — X is a contraction of a complete metric space X, then f has a unique fixed point p € X.

Construction of a fixed pointl

Let X be a complete metric space and f : X — X a contraction. Let z,,11 := f(zn).
The sequence (x,,) is Cauchy and therefore converges. The limit is the unique fixed point p.

Proposition |

Let X be a complete metric space, f : X — X a contraction and p a fixed point of f.
Consider the sequence (z,,) defined by z,, 41 := f(zn).

n—1

d(p, zn) <
(p7x)71

?d(xQ, xl)

Proposition |

Suppose that K : [a,b] X [a,b] — R and f : [a,b] — R are continuous. Then the Volterra equation:

k
8(z) = f(z) + / K(z,9)6() dy

has a unique continuous solution ¢ on [a, b].

Proposition Cauchy-Picard theorem of differential equationsl

Let D = [xg — a,zo + a] X [yo — b, yo + b]. Suppose that f : D — R is continuous and there exists K > 0 such that:

|f(@,91) — f(z,92)| < Kly1 —y2|  forall (z,41), (z,92) € D
Then on I = [zg — ¢,z + ¢], there exists a unique solution y of the differential equation

D—fwy) v =w
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