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2 1 SETS AND MAPS

1 Sets and maps

Definition Set
A set is a boolean function χ which sends an object to {0, 1}:

χA(a) = 1 =⇒ a ∈ A χA(a) = 0 =⇒ a /∈ A A ⊆ B if χA ≤ χB

Proposition De Morgan’s Laws

S \
⋃
i∈I

Ai =
⋂
i∈I

(S \Ai) S \
⋃
i∈I

Ai =
⋂
i∈I

(S \Ai)

Definition Properties of maps

A map f : X → Y is:
• injective or into if f(x) = f(x′) =⇒ x = x′

• surjective or onto if ∀y ∈ Y ∃x ∈ X | f(x) = y
• bijective if injective and surjective.

Notation: f |A is a function f restricted to a domain A.

Definition Image

Let f : X → Y with A ⊆ X and C ⊆ Y .
• The direct image f(A) is {y ∈ Y | ∃a ∈ A | f(a) = y}
• The inverse image (or pre-image) f−1(C) is {x ∈ X | f(x) ∈ C} ⊆ X

Proposition

Let f : X → Y with A,B ⊆ X and C,D ⊆ Y .

f(A ∪B) = f(A) ∪ f(B) f(A ∩B) ⊆ f(A) ∩ f(B)

f−1(C ∪D) = f−1(C) ∪ f−1(D) f−1(C ∩D) = f−1(C) ∩ f−1(D)

Proposition

Consider the map f : X → Y and subsets Ai and Ci of X and Y respectively for all i ∈ I.

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai) f

(⋂
i∈I

Ai

)
⊆
⋂
i∈I

f(Ai)

f−1

(⋃
i∈I

Ai

)
=
⋃
i∈I

f−1(Ai) f−1

(⋂
i∈I

Ai

)
=
⋂
i∈I

f−1(Ai)

Proposition

Suppose that f : X → Y is a map and B ⊂ X,D ⊂ Y . Then,

f(X \B) ⊂ f(X) \ f(B) f−1(Y \D) = X \ f−1(D)

Proposition

Let X,Y be sets and f : X → Y a map.
• For any C ⊂ Y we have f(f−1(C)) = C ∩ f(X).
• For any C ⊂ Y , if f is surjective, f(f−1(C)) = C
• For any A ⊂ X we have A ⊂ f−1(f(A))

Definition Invertible map

A map f : X → Y is invertible if there exists a map g : Y → X such that
g ◦ f is the identity map of X and f ◦ g is the identity map of Y .
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Proposition

A map is invertible if and only if it is bijective.

2 Real analysis

2.1 Bounds

Definition Bounds
S ⊆ R is bounded above if there exists an upper bound u ∈ R such that x < u for all x ∈ S.
If S is bounded above, we call u a least upper bound of supremum for S, denoted sup(S), if:

1. u is an upper bound for S
2. x ≥ u for any upper bound x for S

S ⊆ R is bounded below if there exists a lower bound ℓ ∈ R such that x > ℓ for all x ∈ S.
If S is bounded below, we call ℓ a greatest lower bound of infimum for S, denoted inf(S), if:

1. ℓ is a lower bound for S
2. x ≤ ℓ for any lower bound x for S

Proposition Completeness property

Any non-empty subset of R which is bounded above has a least upper bound.
Any non-empty subset of R which is bounded below has a greatest lower bound.

Proposition

The set N of positive integers is not bounded above.

Proposition Denseness of Q in R
Between any two distinct real numbers x and y there is a rational number.
Between any two distinct real numbers there is also an irrational number.

Proposition Triangle inequality, reverse triangle inequality

For all x, y ∈ R:
|x+ y| ≤ |x|+ |y| |x− y| ≥ ||x| − |y||

2.2 Sequences

Definition Convergent sequence

A sequence (sn) converges to L ∈ R if:

for all ε > 0 there exists Nε ∈ N such that |sn − L| < ε for all n ≥ Nε

Proposition

A convergent sequence has a unique limit.

Proposition

Suppose that there exists K ∈ N (independent of ε) such that:

for all ε > 0 there exists Nε such that |sn − L| < Kε for all n ≥ Nε

Then (sn) converges to L.

Definition Monotonic sequence

A sequence is:
• monotonic increasing if sn+1 ≥ sn for all n ∈ N
• monotonic decreasing if sn+1 ≤ sn for all n ∈ N
• monotonic if it is monotonic decreasing or monotonic increasing
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Proposition

Every bounded monotonic sequence of real numbers converges.

Definition Cauchy sequence

A sequence is a Cauchy sequence if:

for all ε > 0 there exists N ∈ N such that if m,n ≥ N then |sm − sn| < ε

Proposition Cauchy’s convergence criterion

A sequence (sn) of real numbers converges if and only if it is a Cauchy sequence.

Proposition

Every bounded sequence of real numbers has at least one convergent subsequence.

Proposition

Suppose that (sn), (tn) converge to s, t respectively. Then,
• (sn + tn) converges to s+ t
• (sntn) converges to st
• 1/tn converges to 1/t provided t ̸= 0

2.3 Limits of functions

Definition Limit
f(x) has limit L at a (notation: lim

x→a
= L) if:

for all ε > 0 there exists δ > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε

f(x) has right-hand limit L at a (notation: lim
x→a+

= L) if:

for all ε > 0 there exists δ > 0 such that |f(x)− L| < ε for all x ∈ (a, a+ δ)

Proposition

The following are equivalent:
1. lim

x→a
f(x) = L

2. if (xn) is any sequence such that (xn) converges to a but for all n we have Xn ̸= a,
then (f(xn)) converges to L.

Definition Continuity

A function is continuous at a if lim
x→a

exists and is equal to f(a).

Proposition

Suppose that f : R → R is continuous at a ∈ R and that f(a) ̸= 0.
Then there exists δ > 0 such that f(x) ̸= 0 whenever |x− a| < δ.

Proposition

Suppose that f, g : R → R are continuous at a ∈ R.
Then f + g, f · g, |f | and 1

g (only if g(a) ̸= 0) are also continuous at a ∈ R.

Proposition

Suppose that f is continuous at a and g is continuous at f(a). Then g ◦ f is continuous at a.
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Definition Intermediate value property

A function f : R → R has the intermediate value property (IVP) if given any a, b, d in R with a < b and d between
f(a) and f(b), there exists at least one c satisfying a ≤ c ≤ b and f(c) = d.

Proposition

All continuous functions R → R (or I → R where I is an interval) have the intermediate value property.

3 Metric spaces

Definition Metric space

A metric space consists of a non-empty set X together with a function d : X × X → R such that the following
axioms hold:

1. Nonnegativity For all x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y
2. Symmetry For all x, y ∈ X, d(x, y) = d(y, x)
3. Triangle inequality For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z)

Notation: En is the metric space (Rn, d) where d is the Euclidean metric.

3.1 Continuity

Definition Continuity of multivariable functions

A function f : Rn → R is continuous at a point a = (a1, . . . , an) ∈ Rn if for all ε > 0 there exists δ > 0 such that
|f(x)− f(a)| < ε for all x = (x1, . . . , xn) satisfying√√√√[ n∑

i=1

(xi − ai)2

]
< δ

Definition Continuity of metric space maps

Suppose that (X, dX) and (Y, dY ) are metric spaces and let f : X → Y be a map.
• f is continuous at x0 ∈ X if:

for all ε > 0, there exists δ > 0 such that dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ, for all x ∈ X.
• f is continuous (or (dx, dy)-continuous) if f is continuous at every x0 ∈ X.

Proposition

Suppose that f, g : X → R are continuous, real-valued functions on a metric space (X, d).
Then f + g, f · g, |f | and 1

g (only if g(x) ̸= 0 ∀x ∈ X) are also continuous.

Proposition

Suppose that f : X → Y and g : Y → Z are maps of metric spaces,
with f continuous at a ∈ X and g continuous at f(a). Then g ◦ f is continuous at a.

Proposition

Suppose that f : X → X ′, g : Y → Y ′ are maps of metric spaces continuous at a ∈ X, b ∈ Y respectively. Then
the map f × g : X × Y → X ′ × Y ′, (x, y) 7→ (f(x), g(y)) is continuous at (a, b).

Proposition

The projections px : X × Y → X, py : X × Y → Y of a metric product onto its factors,
defined by px(x, y) = x, py(x, y) = y, are continuous.

Proposition

The diagonal map ∆ : X → (X,X), (x) 7→ (x, x) of any metric space is continuous.
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3.2 Bounded sets

Definition Bounded subset
A subset S of a metric space (X, d) is bounded if there exist x0 ∈ X, K ∈ R such that d(x, x0) ≤ K for all x ∈ S.

Definition Diameter
If S is a non-empty bounded subset of a metric space with metric d, then the diameter of S is:

If S nonempty: diam(S) := sup{d(x, y) : x, y ∈ S} diam(∅) = 0

Definition Bounded function
If f : S → X is a map from a set S to a metric space X, then we say f is bounded if f(S) is bounded.

Proposition

The union of any finite number of bounded subsets of a metric space is bounded.

3.3 Open sets

Definition Open ball

Let (X, dx) be a metric space, x0 ∈ X and r > 0(r ∈ R).
The open ball in X of radius r centered at x0 is the set

Br(x0) = {x ∈ X : d(x, x0) < r}

If we also consider metrics other than d, we use the notation Bd
r (x0).

Proposition

f continuous at x0 ⇐⇒ ∀ε > 0 ∃δ > 0 such that f(BdX

δ (x0)) ⊆ BdY
ε (f(x0))

Proposition

Let Br(x) be an open ball and y ∈ Br(x). Then there exists ε > 0 such that Bε(y) ⊆ Br(x)

Definition Open set

Let (X, d) be a metric space and U ⊆ X.
We say that U is open in X if for every x ∈ U there exists εx > 0 such that Bεx(x) ⊆ U .

Proposition

Let f : X → Y be a map between metric spaces.

f continuous ⇐⇒ f−1 is open in X whenever U is open in Y

Proposition

The intersection of a finite number of open sets in a metric space is open.
The union of any number of open sets in a metric space is open.

3.4 Closed sets and closure

Definition Closed set
A subset V of a metric space X is closed in X if X \ V is open in X.

Proposition

The intersection of any number of closed sets in a metric space is closed.
The union of a finite number of closed sets in a metric space is closed.
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Proposition

For any metric space X, the empty set ∅ and the whole set X are both open and closed in X.

Definition Closure
Let X be a metric space and A ⊂ X.

• x ∈ X is a point of closure of A in X if for all ε > 0 we have Bε(x) ∩A ̸= ∅.
• The closure of A in X (denoted A) is the set of all points of closure of A in X.

Definition Dense subset

A subset A of a metric space X is said to be dense in X if A = X.

Proposition Properties of closure

Let A, B be subsets of a metric space X. Then,
1. A ⊆ A
2. A ⊆ B =⇒ A ⊆ B
3. A is closed in X ⇐⇒ A = A
4. A = A
5. A is closed in X
6. A is the smallest closed subset of X containing A

Proposition

Let f : X → Y be a map of metric spaces. Then

f continuous ⇐⇒ f(A) ⊆ f(A) for all A ⊆ X

Definition Limit point

A point x in a metric space X is a limit point of A ⊆ X if:

for all ε > 0 there exists a point in Bε(x) ∩A other than x itself

Proposition

Let A be a subset of a metric space X.

A is closed in X ⇐⇒ A contains all of its limit points in X

Proposition

Let A be any subset of a metric space X. Then A is the union of A with all its limit points in X.

3.5 Interior and boundary

Definition Interior

The interior
◦
A of A is the set of points a ∈ A such that Bε(a) ⊆ A for some ε > 0.

Proposition

Let A,B be subsets of a metric space X. Then,
1.

◦
A ⊆ A

2. A ⊆ B =⇒
◦
A ⊆

◦
B

3. A is open in X ⇐⇒
◦
A = A

4.
◦
◦
A =

◦
A

5.
◦
A is open in X

6.
◦
A is the largest open subset of X contained in A.
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Definition Boundary

The boundary ∂A of a subset A in a metric space X is the set A \
◦
A

Proposition

Let A be a subset of a metric space X and x ∈ A.

x ∈ ∂A ⇐⇒ A ∩Bε(x) and (X \A) ∩Bε(x) are both non-empty

3.6 Equivalent metrics

Definition Topological equivalence

Metrics d1, d2 on a set X are topologically equivalent if:

U is d1-open in X ⇐⇒ U is d2-open in X for all U ⊆ X

Proposition

Suppose that d1, d2 are equivalent metrics for X.
Consider metric spaces (Y, dY ), (Z, dZ) and functions f : Y → Z, g : X → Z. Then,

f (dY , d1)-continuous ⇐⇒ f (dY , d2)-continuous g (d1, dZ)-continuous ⇐⇒ g (d2, dZ)-continuous

Definition Lipschitz equivalence

Two metrics d1, d2 on a set X are Lipschitz equivalent if there exist h, k > 0 such that for any x, y ∈ X:

hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y)

Proposition

Lipschitz equivalent metrics are topologically equivalent.

Definition Lipschitz equivalence

A Lipschitz equivalence is a bijective map f : X → Y where there exist h, k > 0 such that for any x1, x2 ∈ X:

hdY (f(x1), f(x2)) ≤ dX(x1, x2) ≤ kdY (f(x1), f(x2))

Definition Isometry

An isometry f : X → Y is a bijective map such that for all x1, x2 ∈ X:

dY (f(x1), f(x2)) = dX(x1, x2)

4 Topological spaces

Definition Topological space

A topological space T = (X, T ) consists of a non-empty set X
together with a fixed family T of subsets of X satisfying:

1. ∅ and X are in T
2. the intersection of any finite collection of sets in T is in T
3. the union of any collection of sets in T is in T

We call T a topology for X, and if U ∈ T we say that U is open in T . (or open in X)
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Definition Examples of topological spaces

Let X be a nonempty set.
The discrete topology on X consists of all subsets on X.
The indiscrete topology on X is the family {∅, X}.
The co-finite topology on X consists of the empty set and all subsets U of X such that X \ U is finite.

Definition Metrizability

A topological space (X, T ) is metrizable if there exists a metric dX such that:

U ∈ T ⇐⇒ U is dX -open in X

If a topological space (X, T ) is metrizable with metric dX , we say that T is induced by dX

Definition Coarse and fine topologies

Given topologies T1, T2 on the same set X,
we say T1 is coarser than T2 if T1 ⊆ T2, and T1 is finer than T2 if T2 ⊆ T1

Proposition

Let U ⊆ X be a subset of a topological space.

U is open in X ⇐⇒ for all x ∈ U , there is an open subset Ux ⊆ X such that x ∈ Ux

4.1 Continuity

Definition Continuity of topological spaces

Suppose that (X, TX) and (Y, TY ) are topological spaces and f : X → Y is a map.
f is continuous if for all U ∈ TY , f−1(U) ∈ TX .
f is continuous at x0 ∈ X if for all U ′ ∈ TY s.t. f(x0) ∈ U ′, there exists U ∈ TX s.t. x ∈ U and f(U) ⊆ U ′

Proposition

f : X → Y is continuous ⇐⇒ f is continuous at x ∀x ∈ X

Proposition

Let (X, TX), (Y, TY ) be topological spaces induced by metric spaces (X, dX), (Y, dY ) respectively.

f : X → Y is (dX , dY )-continuous ⇐⇒ : X → Y is (TX , TY )-continuous

Proposition

The composition of two continuous maps f : X → Y and g : Y → Z is continuous.

Proposition

The following maps are continuous:
1. The identity map of any topological space.
2. Any constant map.
3. If TX is the discrete topology, any map X → Y .
4. If TY is the indiscrete topology, any map X → Y .

Definition Homeomorphism

A homeomorphism between topological spaces X and Y is a bijective map f : X → Y
such that f and its inverse function f−1 are both continuous.
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4.2 Bases

Definition Basis
A basis for a topology T is a subfamily B ⊆ T such that every set in T is a union of sets from B.

Proposition

A map f : X → Y is continuous if for each open set B in some basis for TY , the inverse image f−1(B) is open in
X.

4.3 Closure and interior

Definition Closed set
A subset V of a topological space X is closed in X if X \ V is open in X.

Proposition

Let X be a topological space. Then
1. ∅ and X are closed in X
2. the intersection of any collection of closed sets in X is closed in X
3. the union of any finite collection of closed sets in X is closed in X

Proposition

Let f : X → Y be a map of topological spaces.

f continuous ⇐⇒ f−1(V ) is closed in X whenever V is closed in Y

Definition Closure
Let A be a subset of a topological space X.
A point a is a point of closure of a A ⊆ X if U ∩A = ∅ for any open subset U ⊆ X with a ∈ U .
The closure A of A in X is the set of points of closure of A in X.

Definition Dense subset

A subset A of a space X is dense in X if A = X.

Proposition

Let f : X → Y be a map of topological spaces. Then

f continuous ⇐⇒ f(A) ⊆ f(A) for all A ⊆ X

Definition Interior
Let A be a subset of a topological space A.
A point a is an interior point of A ⊆ X if there exists some set U which is open in X and with a ∈ U ⊆ A.
The set of all interior points of A is called the interior of A, denoted

◦
A.

Proposition

We have X \A = X \
◦
A for any subset A of a space X.
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Proposition Properties of interior and closure

Let A, B be subsets of a topological space X. Then,

1. A ⊆ A
2. A ⊆ B =⇒ A ⊆ B
3. A is closed in X ⇐⇒ A = A
4. A = A
5. A is closed in X
6. A is the smallest closed subset of X containing A

7.
◦
A ⊆ A

8. A ⊆ B =⇒
◦
A ⊆

◦
B

9. A is open in X ⇐⇒
◦
A = A

10.
◦
◦
A =

◦
A

11.
◦
A is open in X

12.
◦
A is the largest open subset of X contained in A.

Definition Boundary

The boundary ∂A of a subset A of a space X is the set A \
◦
A.

Proposition

For any subset A of a space X, we have ∂A = A ∩X \A = ∂(X \A)

Definition Neighborhood

A neighbourhood of a point x in a space X is a subset N of X which contains an open subset of X containing x.

4.4 Subspaces

Definition Subspace topology

Let (X, T ) be a topological space and let A be a non-empty subset of X. The subspace topology on A is:

TA = {A ∩ U : U ∈ T }

Proposition

Let (X, T ) be a topological space and let A be a non- empty subset of X with the subspace topology TA.
Then the inclusion map i : A → X defined by i(a) = a for all a ∈ A, is (TA, T )-continuous.

Proposition

Let f : X → Y be a continuous map of topological spaces (X, T ), (Y, T ′) and let A be a non-empty subset of X
with the subspace topology TA. Then the restriction f |A : A → Y is (TA, T ′)-continuous.

Proposition

Let X be a topological space, let A be a subspace of X and let i : A → X be the inclusion map.
Suppose that Z is a topological space and that g : Z → A is a map. Then:

g is continuous ⇐⇒ i ◦ g : Z → X is continuous

The subspace topology TA on A is the only topology satisfying this proposition for all possible maps g.

4.5 Product spaces

Definition
Suppose that (X, TX), (Y, TY ) are topological spaces.
The product topology TX×Y on X×Y is the family of all unions of sets of the form U×V where U ∈ TX , V ∈ TY .

Proposition

The following projection maps are continuous:

pX : X × Y → X : (x, y) 7→ x pY : X × Y → Y : (x, y) 7→ y
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Proposition

Let X,Y, Z be topological spaces and f : Z → X × Y .

f is continuous ⇐⇒ pX ◦ f : Z → X and pY ◦ f : Z → Y are continuous

Proposition

If f : X → X ′, g : Y → Y ′ are continuous, then so is f×g : X×Y → X ′×Y ′ defined by (f×g)(x, y) = (f(x), g(y)).

Proposition

For any topological space X, let ∆ : X → X ×X be the diagonal map defined by ∆(x) = (x, x).
The diagonal map is continuous.

Proposition

Let X and Y be topological spaces, and let y0 ∈ Y . Define iy0
: X → X × Y by iy0

(x) = (x, y0).
This map is continuous.

Proposition

If f, g : X → R are continuous real-valued functions on a topological space X, then so are:

|f | f + g fg
1

g
if g is never 0 on X

Definition Graph

Let f : X → Y be a map of topological spaces. The graph of f is defined by:

Gf := {(x, y) ∈ X × Y : f(x) = y}

with the topology induced by the product topology on X × Y .

Proposition

Let f : X → Y be a continuous map of topological spaces.
Then the map θ : x 7→ (x, f(x)) defines a homeomorphism from X to Gf .

Proposition

W ⊆ X × Y open in X × Y ⇐⇒ for all (x, y) ∈ W there exist U ⊆ TX , V ⊆ TY with (x, y) ∈ U × V ⊆ W

4.6 The Hausdorff condition

Definition Convergent sequence

A sequence (xn) of points in a topological space X converges to a point x ∈ X if

for all open sets U containing x, there exists n ∈ N such that n ≥ N =⇒ xn ∈ U

Definition Hausdorff condition
A topological space X satisfies the Hausdorff condition if

for any two distinct points x, y ∈ X there exist disjoint open sets U, V of X such that x ∈ U, y ∈ V

We refer to a topological space which satisfies the Hausdorff condition as a Hausdorff space.

Definition Topological property

A topological property is a property of a topological space that is invariant under homeomorphisms.
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Proposition

Any metrizable space (X, T ) is Hausdorff.

Proposition

1. Any subspace of a Hausdorff space is Hausdorff.
2. The topological product X × Y of spaces X and Y is Hausdorff ⇐⇒ both X and Y are Hausdorff.
3. If f : X → Y is an injective continuous map of topological spaces and Y is Hausdorff then so is X.
4. Hausdorffness is a topological property.

Definition Regular and normal space

A topological space X is regular if given any closed subset V ⊆ X and point x ∈ X \ V , there exist disjoint open
subsets U,U ′ ⊆ X such that V ⊆ U and x ∈ U ′.
A topological space X is normal if given any closed subset V ⊆ X, and closed subset V ′ ⊆ X disjoint from V , there
exist disjoint open subsets U,U ′ ⊆ X such that V ⊆ U and V ′ ⊆ U ′.

4.7 Connected spaces

Definition Connected space

A topological space X is connected if there does not exist a continuous map from X onto a two-point discrete
space.

Definition Partition
A partition A ⊔B is a pair of non-empty subsets A,B ⊆ X such that:

X = A ∪B A ∩B = ∅ A,B open in X

Proposition

Let X be a topological space. The following are equivalent:
1. X is connected.
2. There exists no partition of X.
3. The only subsets of X which are both open and closed are X and ∅.

Definition Connected subset
A non-empty subset A of a topological space X is connected if A with the subspace topology is connected.
The empty set is connected.

Proposition

A non-empty subset S ⊆ R is an interval if and only if it satisfies the following property:
if x, y ∈ S and z ∈ R are such that x < z < y, then z ∈ S.

Proposition

Let S be a subspace of R.
S is connected ⇐⇒ S is an interval

Proposition

Let f : X → Y be a continuous map of topological spaces and X connected.
Then both f(X) and the graph Gf of f are connected.

Proposition

Connectedness is a topological property.

Proposition

Suppose that {Ai : i ∈ I} is an indexed family of connected subsets of a topological space X with Ai ∩Aj ̸= ∅ for
each pair i, j ∈ I. Then

⋃
i∈I

Ai is connected.
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Proposition

Let X × Y be the topological product of spaces X,Y .

X × Y is connected ⇐⇒ X and Y are both connected

Proposition

Suppose that A is a connected subset of a space X and that A ⊆ B ⊆ A. Then B is connected

4.8 Path-connected spaces

Definition Path-connected space

For points x, y in a topological space X, a path in X from x to y is a continuous map f : [0, 1] → X
such that f(0) = x and f(1) = y. We say that such a path joins x and y.
A topological space X is path-connected if any two points of X can be joined by a path in X.

Proposition

Any path-connected space X is connected.

Proposition

Suppose that f, g : [0, 1] → X are paths in a space X from x to y and from y to z, respectively.
We can define a path in X from x to z as follows:

h(x) =

{
f(2t) t ∈ [0, 1/2]

g(2t− 1) t ∈ [1/2, 1]

Proposition

A connected open subset U of Rn is path-connected.

5 Compact sets

Definition Cover

Suppose X is a set and A ⊆ X. A family {Ui : i ∈ I} of subsets of X is called a cover for A if A ⊆
⋃
i∈I

Ui

A subcover of a cover {Ui : i ∈ I} for A is a subfamily {Uj : j ∈ J} for some subset J ⊆ I such that {Uj : j ∈ J}
is still a cover for A. We call it a finite subcover if J is finite. If U = {Ui : i ∈ I} is a cover for a subset A of a
topological space X, and each Ui is open in X, then we call U an open cover.

Definition Compact set

A subset A of a topological space X is compact if every open cover for A has a finite subcover
A subset A of a topological space X is relatively compact in X if the closure A of A in X is compact.

Proposition

Let C be a compact subset of a Hausdorff space X. Then C is closed in X.

Proposition

If f : X → Y is a continuous map of topological spaces and X is compact then f(X) is compact.

Proposition

Compactness is a topological property.

Proposition

Any closed subset C of a compact space X is compact.
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Proposition

Let X,Y be topological spaces with topological product X × Y .

X × Y is compact ⇐⇒ X and Y are both compact

5.1 Compact sets in metric spaces

Proposition

Any compact subset C of a metric space (X, d) is bounded.

Proposition

Any continuous map from a compact space to a metric space is bounded.

5.2 Compact sets in Euclidean spaces

Proposition

Any closed bounded interval [a, b] in R is compact.

Proposition Heine-Borel Theorem

Let C ⊆ Rn.
C is closed and bounded =⇒ C is compact

Proposition

If f : C → R is continuous and C is compact then f attains its bounds on C.
This means there exist c0 ∈ C and c1 ∈ C such that f(c0) = inf f(C) and f(c1) = sup f(C).
A continuous real-valued function on [a, b] attains its bounds.

5.3 Uniform continuity

Definition Uniform continuity

A map f : X → Y of metric spaces (X, dX) and (Y, dY ) is uniformly continuous if:

for all ε > 0 there exists δ > 0 such that dX(x, a) < δ =⇒ dY (f(x), f(a)) < ε for all x, a ∈ X

Proposition

If f : X → Y is a continuous map of metric spaces and X is compact then f is uniformly continuous on X.

Proposition

If metrics d1, d2 for X are Lipschitz equivalent, then the identity map of (X, d1) to (X, d2) is uniformly continuous.

Proposition

Let X be a compact space and Y a Hausdorff space. Let X : X → Y be a continuous map.
If f is bijective, then f is a homeomorphism from X to Y .
If f is injective, then f is a homeomorphism from X to f(X).
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6 Sequences in metric spaces

6.1 Convergent sequences

Definition Convergent sequence

A sequence (xn) in a metric space X converges to x ∈ X if:

for all ε > 0 there exists N ∈ N such that n ≥ N =⇒ xn ∈ Bε(x)

Proposition Uniqueness of limits

If a sequence (xn) in a metric space X converges to both x and y in X, then x = y.

Definition Cauchy sequence

A sequence (xn) in a metric space (X, d) is called a Cauchy sequence if:

for all ε > 0 there exists N ∈ N such that m,n ≥ N =⇒ d(xm, xn) < ε

Proposition

Any convergent sequence in a metric space is a Cauchy sequence.

Proposition

Suppose that Y is a subset of a metric space X and (yn) is a sequence in Y which converges to a ∈ Y . Then a ∈ Y .
If Y is closed in X, then a ∈ Y .

Proposition

If a Cauchy sequence (xn) in a metric space X has a subsequence converging to x ∈ X then (xn) converges to x.

6.2 Sequential compactness

Definition Sequential compactness

A metric space X or a subset X ⊆ R is sequentially compact if every sequence in X has at least one subsequence
converging to a point of X. The empty set is also considered to be sequentially compact.
A non-empty subset A of a metric space is sequentially compact if this definition holds with the subspace metric dA.

Proposition

Let S ⊆ R.
S is closed and bounded ⇐⇒ S is compact ⇐⇒ S is sequentially compact

Proposition

Let (X, d) be a metric space.

X is sequentially compact ⇐⇒ X is compact

Proposition

Let (xn) be a sequence in a metric space X and let x ∈ X.
If for all ε > 0, Bε(x) contains xn for infinitely many values of n, then (xn) has a subsequence converging to n.

Proposition

Suppose that a sequence (xn) in a metric space X has no convergent subsequences.
Then for each x ∈ X there exists εx > 0 such that Bεx contains xn for only finitely many values of n.

Proposition

Any compact subset X of a metric space Y is sequentially compact.
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Definition Lebesgue number

Let U be any family of subsets of a metric space X covering a subset A ⊆ X. A Lebesgue number for U is a real
number ε > 0 such that for all a ∈ A the ball Bε(A) is contained in some single set from U .

Proposition

Any open cover U of a sequentially compact metric space X has a Lebesgue number.

Definition ε-net
Let ε > 0 be a real number and X a metric space. N ⊆ X is an ε-net for X if the family {Bε(x) : x ∈ N} covers
X.

Proposition

Let (X, d) be a sequentially compact metric space and let ε > 0. Then there exists a finite ε-net for X.

6.3 Uniform convergence

Definition Pointwise convergence

A sequence (fn) converges pointwise to f on D if for all x ∈ D, the sequence (fn(x)) converges to f(x).

Definition Uniform convergence

A sequence (fn) defined on a domain D ⊆ R converges uniformly on D to a function f if:

for all ε > 0 there exists N ∈ N such that |fn(x)− f(x)| ≤ ε for all x ∈ D, n ≥ N

Proposition

fn converges uniformly to f on D if Mn = sup
x∈D

|fn(x)− f(x)| exists for all sufficiently large n, and lim
n→∞

Mn = 0.

Definition Uniform Cauchy sequence

A sequence (fn) is said to be uniformly Cauchy on D ⊆ R if:

for all ε > 0 there exists N ∈ N such that |fm(x)− fn(x)| < ε for all m,n ≥ N, x ∈ D

Proposition Cauchy’s criterion for uniform convergence

Let (fn) be a sequence of real-valued functions defined on D ⊆ R.

(fn) converges uniformly on D ⇐⇒ (fn) is uniformly Cauchy on D

Proposition

If fn : (a, b) → R is continuous at c ∈ (a, b) for all n ∈ N and fn → f uniformly, then f is continuous at c.

Proposition

If fn : [a, b] → R is continuous for all n ∈ N and (fn) → f uniformly on [a, b], then f is continuous on (a, b).

Proposition

Suppose that the pointwise limit of a sequence (fn) of continuous functions on [a, b] is not continuous on [a, b].
Then the convergence is not uniform.
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6.4 Complete spaces

Definition Complete space

A metric space X is complete if every Cauchy sequence in X converges to a point in X.

Proposition

Suppose that X,Y are metric spaces and f is a bijective map such that f and f−1 are uniformly continuous.

X is complete ⇐⇒ Y is complete

Proposition

Let X be a metric space and let d1, d2 be Lipschitz equivalent metrics.

(X, d1) is complete ⇐⇒ (X, d2) is complete

Proposition

A complete subspace Y of a metric space X is closed in X.

Proposition

A closed subspace Y of a complete metric space X is complete.

Proposition

Any compact metric space X is complete.

Proposition

Let X,Y be metric spaces and with product X × Y .

X × Y is complete ⇐⇒ X and Y are complete

Proposition

Let B(D,X) be the space of bounded functions D → X with the sup metric d∞.

(B(D,X), d∞) is complete ⇐⇒ X is complete

6.5 Fixed points and contractions

Definition Fixed point

Given any set S and map f : S → S, a fixed point of f is a point p ∈ S such that f(p) = p

Definition Lipschitz condition

Let α,K be constants with α > 0,K ≥ 0.
A function f : D → R satisfies the Lipschitz condition of order α on D with constant K, if:

for all x, y ∈ D |f(x)− f(y)| ≤ K · |x− y|α

Proposition

1. If f satisfies a Lipschitz condition of order α > 0 on D then f is uniformly continuous on D.
2. If f satisfies a Lipschitz condition of order α > 1 on [a, b] then f is constant on [a, b].
3. If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b) with |f ′(x)| ≤ K for all x ∈ [a, b],

then f satisfies a Lipschitz condition of order 1 with constant K on [a, b].
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Proposition

Let D be an interval [a, b], (−∞, b] or [a,∞), and f : D → D Lipschitz with K < 1 and α = 1.
Then f has a unique fixed point p ∈ D.
Moreover, if x1 is any point in D and Xn = f(xn−1) for n > 1, then (xn) converges to p.

Definition Contraction
Let (X, d) be a metric space. A function f : X → X is a contraction if there exists 0 ≤ K < 1 such that:

d(f(x), f(y)) ≤ K · d(x, y) for all x, y ∈ X

Proposition

Any contraction of a metric space X is uniformly continuous.

Proposition Banach’s fixed point theorem

If f : X → X is a contraction of a complete metric space X, then f has a unique fixed point p ∈ X.

Construction of a fixed point

Let X be a complete metric space and f : X → X a contraction. Let xn+1 := f(xn).
The sequence (xn) is Cauchy and therefore converges. The limit is the unique fixed point p.

Proposition

Let X be a complete metric space, f : X → X a contraction and p a fixed point of f .
Consider the sequence (xn) defined by xn+1 := f(xn).

d(p, xn) ≤
Kn−1

1−K
d(x2, x1)

Proposition

Suppose that K : [a, b]× [a, b] → R and f : [a, b] → R are continuous. Then the Volterra equation:

ϕ(x) = f(x) +

ˆ k

a

K(x, y)ϕ(y) dy

has a unique continuous solution ϕ on [a, b].

Proposition Cauchy-Picard theorem of differential equations

Let D = [x0 − a, x0 + a]× [y0 − b, y0 + b]. Suppose that f : D → R is continuous and there exists K > 0 such that:

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2| for all (x, y1), (x, y2) ∈ D

Then on I = [x0 − c, x0 + c], there exists a unique solution y of the differential equation

dy

dx
= f(x, y) y(x0) = y0

.
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